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Min-Cost Max-Flow Characterization of Shared-FDL Optical Switches
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Abstract—We characterize the assignment of shared fiber delay
loops (FDLs) in optical switches as a min-cost max-flow problem
to obtain a bound on their optimum performance.

Index Terms—OPS, FDLs, scheduling algorithms, max-flow.

I. INTRODUCTION

THE main architectures for time-slotted all-optical packet
switching are [1]: output buffering, whose optimum

scheduling is trivial; input buffering, whose scheduling is
equivalent to a matching problem in bipartite graphs [2] (opti-
mum output-buffering scheduling algorithms are the basis for
feasible maximal size matching schedulers that approximate
the optimum solution); and shared feedback buffering (SFB),
whose scheduling problem we characterize in this paper as a
min-cost max-flow problem.

The input ports of an SFB switch [3] (Figure 1(a)) share a
pool of feedback FDLs. Each FDL delays (buffers) cells for a
fixed number of time slots to avoid contention. Let Z and N
respectively be the number of FDLs and input/output ports.
The outputs (inputs) of the FDLs and the inputs (outputs) of
the switch are collectively the inlets (outlets) of the switch
fabric. The main purpose of the reservation scheduler is
to maximize the number of nonblocking FDL routes for
incoming cells to minimize cell losses in each time slot. The
switch module maintains a configuration table C(s, t), for
s ∈ {outlets}, 0 ≤ t < F , where F − 1 is the maximum
aggregated cell delay. An entry C(s, t) acquires a value of
i ∈ {inlets} if outlet s (output or FDL) is connected to inlet i,
and a value of 0 if outlet s is idle at time slot t. This can be
logically represented by a slot transition diagram. Figure 1(b)
shows an example with N = 2, Z = 2 (FDL lengths 1 and
2), F = 4, and a maximum number of circulations K = 2,
where some routes have been previously scheduled. Node T (t)
represents time slot t. If a FDL with length l is available at
time slot t (i.e. C(FDLl, t) = 0), arc (T (t),T (t + l)) exists.
In this representation, finding a valid FDL route to a time slot
when output p is available is equivalent to finding a path from
T (0) to any T (t) where C(output p, t) = 0. The sequential
FDL assignment algorithm (SEFA) [3] performs a breadth-
first search in the slot transition diagram to sequentially find
nonblocking FDL routes for every incoming cell. When there
are multiple choices, SEFA first selects the FDL route with
the fewest circulations and, if there are multiple such routes, it
picks the one with the shortest delay. Since SEFA is sequential,
it performs suboptimally. In the example in Figure 1(b), if
two cells requesting outputs 1 and 2 are scheduled in output
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Fig. 1. (a) Shared-FDL optical switch. (b) Slot transition diagram.

index order, the first is assigned route T (0) FDL1→ T (1)
and the second cannot be assigned. Nevertheless, both cells
could be scheduled by assigning routes T (0) FDL2→ T (2) and

T (0) FDL1→ T (1), respectively.

II. MIN-COST MAX-FLOW CHARACTERIZATION

Since the cells share the FDLs, a global scheduling deci-
sion seems necessary to achieve optimum performance. We
modified the slot transition diagram in Figure 1(b) to that
shown in Figure 2. Let Tk(t) be a time slot node of level
k, 1 ≤ k ≤ K , such that any cell arriving at T0(0) takes
k circulations to reach it, where t is the aggregated delay of
the traversed FDLs. An FDL arc from Tk(t) to Tk+1(t + l)
represents the availability constraint for all FDLs with length
l, and its capacity is the number of available FDLs with delay l
in time slot t. To represent the output availability constraints,
we introduced the delay nodes D(t) and the output nodes
O(p), 1 ≤ p ≤ N . Node D(t) represents an aggregated
delay t, which is achievable in K circulations at most. A
delay arc with capacity N connects every Tk(t) to D(t). The
capacity of the output arcs connecting every D(t) to an O(p)
represents the availability of switch output p at time slot t,
(C(output p, t)). Finding a valid FDL route from time slot 0
to a time slot when p is available is equivalent to finding a path
from T0(0) to O(p). The capacities of the FDL arcs and the
output arcs respectively represent FDL availability constraints
C(FDL l, t) and output availability constraints C(output p, t).
Since at most N cells can arrive at a particular time slot
simultaneously, the delay arcs impose no restrictions. If a flow
unit represents a cell, the number of lost cells is minimum for
a maximum flow from T0(0) to the O(p) nodes. The sink
node S, which completes the model, is connected to every
O(p) by the requesting arcs, whose capacity is the number
of cells demanding a connection to output p at the current
time slot. In a particular solution, each flow unit through a
delay arc (Tk(t),D(t)) means that a cell is delayed for an
aggregated delay t resulting from k circulations. To account
for the cost of a given assignment, and to introduce the
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Fig. 2. Modified slot transition diagram (flow/capacity/[cost]).

number of circulations and the cell delay in the optimization
process, each delay arc (Tk(t),D(t)) has an appropriate cost
cost(Tk(t),D(t)). If we denote the flow through a delay arc
(Tk(t), D(t)) of a given assignment as flow(k, t), the number
of circulations and the total delay for that solution will be∑

∀k,t flow(k, t) · k and
∑

∀k,t flow(k, t) · t, with respective
upper bounds Uc = N ·K and Ud = N ·(F −1). If we assign a
weight k·(Ud+1)+t to output arc (Tk(t), D(t)), the total cost
becomes (Ud +1) ·∑∀k,t flow(k, t) ·k+

∑
∀k,t flow(k, t) · t.

According to this expression, saving a single cell circulation
is better than decreasing the cell delay for its maximum
value. Therefore, a minimum cost assignment has the lowest
average delay for a minimum number of circulations. In the
example in Figure 2 the cost of delay arc (T1(1),D(1)) is
k · (Ud + 1) + t = 1(2 · 3 + 1) + 1 = 8. Analogously, if the
cost of the output arcs is k + t · (Uc + 1), cell delay is more
important for minimization than the number of circulations.

Given this model, the well-known min-cost max-flow op-
timization from the source T0(0) to the sink S seeks the
maximum flow between them that fulfills the capacity con-
straints (FDL/output availability and cell requesting demands),
at a minimum cost, as shown in Figure 2. This maximizes
throughput and minimizes the number of circulations and cell
delays. Each flow unit through an output node O(p) represents
a scheduled cell to output p and a route that is given by the
flow through the FDL arcs.

There is an inconsistency in both the proposed character-
ization and the PIFA model [3]. If two FDL arcs of the
same length l depart from two different time slot nodes
associated to the same delay Tk(t) and Tk′ �=k(t), there are two
representations of the availability of the FDLs with length l at
time slot t, and the characterization is not valid. evertheless,
it is valid in practical scenarios where K = 2, since the FDL
arcs from T0(0) and T1(t) have different associated delays.
Moreover, since the integer decomposition as a sum of powers
of two is unique, with common power-of-two FDL delays [3],
and if the cells are not allowed to traverse an FDL with a given
delay twice, the time slot nodes for a given time slot t are
unique, Tk(t) = T (t) (the delay nodes D(t) are not needed
at all) and there are no inconsistencies for any K . In fact,
since only a few inefficient routes (longer than necessary) are

discarded, the impact on performance is negligible.

III. MIN-COST MAX-FLOW ALGORITHM

The well-known Ford-Fulkerson algorithm [4] is used to
solve the min-cost max-flow problem. If there are paths from
the source to the sink with excess capacity, the algorithm sends
flow along the cheapest path, which is called an augmenting
path. After each iteration, the cost of the flow through the
graph is minimum, and the algorithm stops at maximum flow.
In order to find augmenting paths, the algorithm looks for the
minimum cost path in the residual network, namely the same
network with different capacities, such that the capacity in arc
(u, v) from node u to node v is capacity(u, v)− flow(u, v),
and no flows. Note that sending a flow flow(u, v) through
any arc (u, v) with cost cost(u, v) may saturate (u, v), but it
opens a new arc (v, u) in the opposite direction with capacity
flow(u, v) and cost −cost(u, v). The residual graph may
have negative costs and the Bellman-Ford algorithm has to
be used instead Dijkstra’s to find the min-cost paths. Since
every augmenting path has to traverse an output arc with
maximum capacity 1, it will have unitary flow and each
algorithm step will assign a single cell. At each time slot,
there may be many solutions fulfilling the given assumptions.
For the sake of fairness, the priority of the cells demanding
each output is balanced along different time slots in a round-
robin scheme. To simplify this process, the direction of every
arc is reversed: node T0(0) becomes the sink, both S and
the requesting arcs are deleted, and each O(p) node acts as a
source until all the cells demanding the output (the capacity
of the original (D(t), O(p)) requesting arc) are assigned. The
algorithm then considers node O((p + 1) mod N), and so
forth. At the next time slot, the algorithm first considers output
O((p + 1) mod N), and so forth.

Figure 3 shows the evolution of the min-cost max-flow algo-
rithm for a given configuration if two cells requesting outputs
1 and 2 are scheduled and the number of cell circulations
is prioritized over cell delay. In Figure 3(a), the min-cost
augmenting path (in bold dashed line) from O(1) is calculated
in order to assign the cell that demands output 1, and its cost
is 8 since it traverses just one delay arc with cost 8. The cell is
temporarily scheduled with delay 1, since the corresponding
FDL route has minimum cost. In Figure 3(b), the min-cost
augmenting path with cost 9 from O(2) is calculated in order
to assign the cell that demands output 2, and the previous
cell assignment changes. Unlike the SEFA solution, both cells
become scheduled in the optimum in Figure 3(c). The min-cost
max-flow algorithm has N Bellman-Ford steps at most (one
per incoming cell) and each one has O(V ·E) complexity (V
and E respectively stand for the number of nodes and arcs).
Thus, the proposed algorithm has O(N · V · E) complexity.
This may be high for a real-time implementation, but it allows
the generation of theoretical bounds to evaluate suboptimal
methods. The large simulations of section IV took a few
minutes on a desktop computer.

IV. RESULTS

We evaluated the practical SEFA algorithm [3] with our
optimum bound on a N = 32 optical switch for i.i.d. Bernoulli
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Fig. 3. Algorithm example (flow/capacity/[cost]): (a) Augmenting path for output 1 cell. (b) Augmenting path for output 2 cell. (c) Assignment result.

arrivals. The simulated configurations had Z = 32 FDLs, in
groups of (5, 5, 5, 5, 4, 4, 4) FDLs with respective delay values
of (1, 2, 4, 8, 16, 32, 64) cell times. Finally, we set K = 2
and F = 128. Figure 4 shows the simulation results for
SEFA and the min-cost max-flow bound in terms of cell loss
rate, average delay, and number of circulations. We checked
that, for every configuration, the performance of SEFA was
close to the optimum, as provided by our theoretical bound. It
should also be noted that emphasizing delay over circulation
minimization increases cell circulations and cell loss rate, and
cell delay is even higher at medium loads, since using more
FDLs than necessary to reduce cell delay at the current time
slot yields an overall delay increase in subsequent time slots.

V. CONCLUSIONS

We have proposed a min-cost max-flow optimization model
for shared-FDL optical switches that provides optimum perfor-
mance bounds. These bounds allow the evaluation of practical
schedulers. In this sense, we have shown that the performance
of SEFA is close to optimum.
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